
ECS 289M, Research in Computer and Information Security Winter/Spring Quarter 2018

Literature Review Template and Rubric

In this review, provide a careful, critical, and thorough explanation of relevant prior work on your

project. It should be divided into two parts: background and previous work. The background is the basic

material that you need to know to begin your research. Previous work builds on the background and is

research that is directly relevant to your project. Your focus should be on the previous work. Do not

simply list previous work; critically evaluate it and explain how your work is different and better.
Here is the grading rubric for the literature review. It will be graded on a 10 point scale, distributed as below.

Use of Previous Work (3 points)

– Work is cited properly — formatting, proper attribution of knowledge, etc. (1 point)

1 point: mostly or all correct citation

0 points: little or no correct citation

– Work is critically analyzed and shown to be relevant — its contribution to the field and to the

problem at hand is mentioned and qualified (2 points)

2 points: most or all of the work is given adequate treatment

1 point: some of the work is given adequate treatment, most or all of the work is partially addressed
0 points: work is mentioned, little or no critical thought or framing is attached to the

mentions Evidence of an argument built into the review (7 points)

– Argument is well-structured — similar points grouped, logical progression, showcases relevant

sides of the issue; the dimensions mentioned in the problem statement should be tackled here,

and vice versa (2 points)

2 points: the argument mostly flows logically and transitions between points are handled

1 point: the argument is there but there is little flow or transitioning
0 points: no evidence of organization of the argument

– Work referenced supports the argument — each work cited makes a clear point about the state

of knowl-edge in this area, the established procedure for investigating it, and so forth, and the
utility of each work in characterization of the problem or solution is apparent. (3 points)

3 points: the point is clear for all or almost all works

2 points: the point is clear for most works, or a little more effort is needed on the clarity or justification
1 point: some works, or quite a bit of effort is needed on clarity or justification
0 points: most works are not given any reason to be mentioned

– Argument supports the proposed work — each step in the proposed work is supported by

precedence in literature or a demonstrated and noted lack of precedence in literature. (2 points)
2 points: evidence is clear and clearly stated for most or all steps

1 point: statement or justification is not clear, and/or some steps are not justified
0 points: literature review seems to have little to do with justification for proposed work

Version of January 10, 2018 at 1:29pm Page 1 of 1

LITERATURE REVIEW

Software Target-Focused Flow Analysis

Anonymous

STATIC ANALYSIS

FlowDroid [2] is a sophisticated context-,flow-, field-, object-sensitive and lifecycle-aware static

taint analysis tool for Android applications. It does not model the inter-component

communication of Android applications and hence it cannot exam the implicit information flows.

Epicc [8] statically resolves the destinations of each inter-component communication instance

by reducing the problem into a traditional program analysis problem. IccTA [7] and DidFail [6]

combine FlowDroid with Epicc and seek to recognize sensitive inter-component and inter-

application information flows. DroidSafe [5] focus on providing more accurate modeling of

Android system, which identifies some data flows missed by FlowDroid due to inaccuracy

modeling of life-cycle and callback events.
Above approaches inherit the general limitations of static analysis i.e. they generate false

alarms. These tools are oblivious to reflective calls, native code and multi-threading and

generate false alarms. Also, in preliminary experiments running FlowDroid on real apps

collected from the app markets, most of them terminate in unexpected ways: either due to

timeout or out-of-memory exception.

DYNAMIC ANALYSIS

Dynamic analysis is embedded into the mobile operating systems and monitors the applica-

tions at runtime. TaintDroid [4] is a sophisticated dynamic taint-tracking tool. BayesDroid [9] is

built upon TaintDroid to further classify information leakages through checking values between

sources and sinks.

1

Compared to static analysis, dynamic analysis does not need to worry about the reflections

inside the apps and only report the malicious behaviors during runtime, which generate much

less false alarms and is more usable to the end users. However, low code coverage limits the

overall detection rate of dynamic analysis.

HYBRID ANALYSIS

To overcome the disadvantages and preserve the advantages of both static analysis and dy-

namic analysis, AppAudit [10] first attempts to model data flow inside apps by integrating static

analysis and dynamic analysis. It quickly obtains rough over-estimated relationships between

sources and sinks through static analysis, and then prunes the results through dy-namic

analysis. The outcomes show that it achieves better performance in both precision and

usability, as compared to a pure static analysis approach or a dynamic analysis approach.

Inspired by AppAudit, we attempt to come up with a better hybrid approach to extract program

dependencies in the apps.
We notice that AppAudit still misses a lot data flows on DroidBench [1], which is a

benchmark toolkit to test the performance of taint analysis tools. The main reason behind is

AppAudit purely relies on concrete value to proceed the analysis. Unknown value, however,

may be generated due to the insufficient run-time information. The existence of unknown

value in the conditional program statements will lead to incomplete searching paths and

inaccurate data flow results. The problem can be alleviated with the help of symbolic

execution [3]. Symbolic execution leverages symbolic representation and first-order logic to

represent an unknown variable. We will integrate the ideas from symbolic execution into the

technique proposed by AppAudit to achieve higher accuracy.
Also, the call graph algorithm of AppAudit does not consider the potential sensitive behav-

iors inside Android GUI callbacks. We can create a more appropriate model of the mobile

operating system to locate the stealthy behaviors.
Since the core engine of AppAudit is not open-source, we also need to implement our own

virtual machine and program analysis module.

REFERENCES

[1] Droidbench. http://blogs.uni-paderborn.de/sse/tools/droidbench/. Accessed: 2016-02-

26.

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,

and P. McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-

aware taint analysis for android apps. In Proc. of PLDI. ACM, 2014.

[3] C. Cadar and K. Sen. Symbolic execution for software testing: three decades later. Com-

munications of the ACM, 56(2):82–90, 2013.

[4] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.

2

Sheth. Taintdroid: an information-flow tracking system for realtime privacy monitoring on

smartphones. ACM Transactions on Computer Systems (TOCS), 32(2):5, 2014.

[5] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C. Rinard. Information

flow analysis of android applications in droidsafe. In NDSS, 2015.

[6] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer. Android taint flow analysis for app

sets. In Proceedings of the 3rd ACM SIGPLAN International Workshop on the State of

the Art in Java Program Analysis, pages 1–6. ACM, 2014.

[7] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,

D. Octeau, and P. McDaniel. Iccta: Detecting inter-component privacy leaks in android

apps. In Proceedings of the 37th International Conference on Software Engineering-

Volume 1, pages 280–291. IEEE Press, 2015.

[8] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. Le Traon. Effective

inter-component communication mapping in android with epicc: An essential step towards

holistic security analysis. Effective Inter-Component Communication Mapping in Android with

Epicc: An Essential Step Towards Holistic Security Analysis, 2013.

[9] O. Tripp and J. Rubin. A bayesian approach to privacy enforcement in smartphones. In

Proc. of USENIX Security, 2014.

[10] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effective real-time android application auditing.

In Security and Privacy (SP), 2015 IEEE Symposium on, pages 899–914. IEEE, 2015.

3

MEG Literature Review

Anonymous

1 Introduction

Few people realize today that the vast majority of emails transmitted today are
sent completely unencrypted. This allows anyone who has access to the

routers these communications are being sent over to read and even modify

the contents of these communications. Encryption is a technology that is used
liberally on the internet today. HTTPS ensures that bank communications are

kept secure. SSH supplanted telnet because other actors cannot view and

modify what actions that administrators perform on remote machines. So why
is email an outlier? The problem does not lie in the infeasibility of encrypting

email but rather the practicality of it. Existing email encryption schemes are

clunky and can only be performed by committed users. This leaves the vast
majority of non-technical and less security conscious users completely naked

to their emails being spied. The Mobile Encryption Gateway (MEG) aims to

solve this. MEG aims to take the di culty of encrypting email and perform it all
in the background while allowing the user to have as much ease as possible

in performing secure communications. This is combined with an aspect of

security and data privacy that MEG provides where all communications
remain encrypted on a users mobile device. As a result of this security and

ease of use MEG o ers ordinary people their best chance going forward to

have a reasonable encryption solution for their emails.

2 Existing Encryption Schemes

2.1 For starters: PEM

Privacy Enhanced Mail (PEM) was the rst encryption scheme to be released
for email. PEM worked whereby users could publish their public keys and then
these keys could be signed by the private key of a certifying authority. In PEM
Certi cate Authorities (CAs) worked by creating a hierarchical system of trust
eventually terminating in a single trusted root authority, the Internet

1

Policy Registration Authority (IPRA) [11, 15]. However PEM was never widely
implemented when the security concerns and potential liabilities of a single
root authority became evident [2, 17]. As a result of this S/MIME was created
to address the de ciencies of PEM.

2.2 S/MIME to the rescue?

After the abandonment of PEM S/MIME became the de-facto email encryp-

tion standard. The main di erence between S/MIME and PEM is S/MIME
drops the necessity for a single root authority and acknowledges the

existence of multiple independent CAs [11]. It is for this reason that S/MIME

has been able to integrate itself into the web given that the major CAs today
are well ac-cepted. The problem with S/MIME is the issue of certi cate

creation. Creation of X.509 certi cates is a centralized process imposed by

the CAs [12]. The CAs charge expense for their services, anathema to many
users used to the many free services available online. In addition the process

of obtaining a certi cate can take days if not weeks. Certi cates are speci c to

an email address meaning that each individual user must obtain their own
personal certi cate for their mail account if they do not have a system

administrator able to obtain it for them. Even then, network e ects must be

taken into account and if the recipi-ent of an encrypted email does not have
an S/MIME certi cate themselves then the email cannot be sent in encrypted

form. It is for these reasons that users have found the process of obtaining

S/MIME certi cates onerous to the point of infeasible [12].
The best attempt yet to alleviate these usability issues with S/MIME is a

solution created by Simson Gar nkel named Key Continuity Management (KCM).

KCM operates by directly creating a self signed X.509 key pair for a user and

then injecting that into Microsoft Outlook. Messages can then be signed and

encrypted. KCM manages this entire process in the background making it

seamless for an user to adopt. Because the keys are self signed trust is given to

the host from which the message was received instead of a CA [12]. This allows

KCM to operate both instantaneously and for free in comparison to a CA. Yet the

abandonment of CAs leads to major aws with this idea. The rst problem with this

scheme arises in the self signing of certi cates. By Gar nkel's own admission

many mail clients discourage a user from accepting an email that is self -signed

[11]. In addition many mail clients do not even accept the use of self -signed certi

cates, viewing them as insecure [14, 16]. Gar nkel tries to argue that the use of

self signed certi cates would be more acceptable if the user could determine

whether to trust the host the message is coming from similar to how SSH works

[11]. However this does not constitute a feasible solution to the problem. Gar nkel

is essentially stating that since self signed certi cates will never be able to validate

the identity of who is sending the communication [9] let the user determine who to

trust. But asking the user to understand their risk is unreasonable. The vast

majority of users do not understand the purpose of self signed certi cates [7].

When study participants were prompted with security decisions in a study on

HTTPS on whether or not to accept dubious certi cates

2

users frequently chose to accept them [5]. In fact, according to Downs a likely

way to spoof identity would just be to impersonate a company the user does

business with [7]. Given how easy users are to fool we see why KCM would face

suspicion from regular email providers like Google and Microsoft. Furthermore

KCM adoption would place users at greater security risk given they will trade in

provider built-in phishing protection and spam ltering for encrypted mail.
To conclude our discussion of S/MIME we note that it is the current leading

standard for email encryption. But this does not mean that it constitutes the best

scalable solution. S/MIME has major usability and cost concerns associ-ated with

using CAs as a source of validating contact authenticity. Attempts to remedy

these concerns through KCM enable widespread encryption but take a major step

backwards on validating contact identity and user security. If one wants to use

S/MIME then using the CAs is the only way to correctly perform encryption. Yet

even if someone was able to automate usability concerns away cost issues would

still persist. Thus S/MIME cannot truly be held as a standard for widespread email

encryption going forward.

2.3 PGP

The main alternative to S/MIME is PGP. In a perfect world users would just
be able to perform the service of encrypting and validating all mail for them-

selves solely using PGP. In contrast to S/MIME X.509 certi cates PGP keys

are decentralized. Instead of a single certi cate authority to vouch for the
iden-tity of a person PGP operates over a web of trust between other people.

The projects creator Phil Zimmermann claimed that eventually PGP "will
cause the emergence of a decentralized fault-tolerant web of con dence for

all public keys." [20] In practical terms the web of trust works through key
signing. The greater amounts of times a key has been signed, or certi ed, as

trustworthy by other users the more trustworthy that key is [10]. This means

that with proper use of the web of trust PGP is able to validate the
authenticity of the person one is communicating with [9]. This is a major

improvement over self-signed X.509 certi cates.
In further contrast with S/MIME even an inexperienced user can generate a

PGP key in a matter of minutes on their own personal computer [19, 20]. PGP

when properly used guarantees that communications will be completely

unreadable to parties not intended to receive a message [20]. With this known

academics decided to perform user studies on how well people were able to en-

crypt their emails when using PGP. In disappointment to security advocates a

seminal study named \Why Johnny can't Encrypt" decisively found the major-ity of

users are incapable at encrypting messages using PGP even given ample

amounts of time to try to perform the task [19]. Even using the best GUI in-terface

for PGP at the time, PGP 5.0, the few who were able to encrypt their

communications often exposed their private key in plain text [19]. A follow-up

study conducted in 2006 on a more modern interface still found users could not

accomplish the task of encrypting and sending an email [18]. Results for another

study in 2016 will doubtfully be much di erent. And while dedicated

3

security and IT personnel will likely have little trouble in encrypting commu-
nications regular nontechnical persons cannot be expected to perform native
PGP encryption even using a GUI. In summary, while PGP o ers the bene ts
of decentralized encryption based on a web of trust it cannot natively o er a
scalable solution for email encryption.

2.4 Alternatives

As a result of di culties with PGP and S/MIME alternative schemes for email
encryption have surfaced. A lightweight key distribution system [3] is one

such system devised. A proxy gateway that has knowledge of the user's

private key is another system that can be adapted for email encryption [4].
The main problem with these systems is that they will be implemented by the

mail provider. We now know post-Snowden that mail providers sometimes
collaborate with the government to release private user data. If provider and

government are not partners we saw in the case of Lavabit it is trivial for the
government to obtain a persons data even if the government does not have a

warrant for that speci c user. A service merely has to be of suspicion and that

will cause the release of private information [1].
There are paid services that take the usability headaches of S/MIME and PGP

and automate that for individual users. Services like ciphermail have built in CAs

[6] so they can issue X.509 certi cates instantly. Hushmail uses PGP to perform

encryption [13]. However paid services are still not necessarily secure even if

they provide encryption for mail in transit. For example Hushmail only receives a

score of 1 out of 7 from the Electronic Frontier Foundation for its services [8]. This

is due to the fact the service does not o er end to end encryption, users cannot

verify the identity of contacts, and past messages aren't secure if encryption keys

are stolen among other things. Most importantly these services all still su er from

the chicken and the egg problem of the network e ect that a icts both S/MIME and

PGP. If users are using a paid encrypted service then their emails will

undoubtedly be encrypted. But if people are not using a paid service then there is

small chance they will be enticed to spend their money on one just to receive

encrypted email. Indeed why bother spending money on encryption when Gmail

is free.
Services like Hushmail and ciphermail provide the easiest alternative for

users who want their emails encrypted in transit. Email services like Gmail

could conceivably add additional encryption techniques onto their service like
a proxy to allow encryption. Yet, these solutions are not perfect. Hushmail

has a less than stellar privacy rating. The fact that all paid clients do not have
open source code means we cannot validate the security of the services

provided. And using a proxy with a shared key is not guaranteed as a means

of protecting against government or criminal intrusion. A viable solution for
email encryption needs to ensure that the users private key stays private, that

a service maintains complete end to end encryption, and that the code be
open source or at the least be continuously validated in security audits.

4

3 MEG; and how it xes things

MEG aims to address many of the problems that stem from using PGP,

S/MIME, and mail provider based encryption schemes. First and foremost
MEG aims to use PGP because it is free, decentralized, and can validate
contact identity using web of trust. MEG however aims to alleviate the

usability headaches sur-rounding PGP by automating the entire process of
key generation, signing keys, encryption, and decryption of messages for the

user. This way the user gets to enjoy encryption for their emails while not
having to worry about the low level details of how it works.

MEG will ensure user data stays private. End to end encryption will be built

into MEG on any part where it is necessary. A users private key will stay on their

phone. This way no one except the owner of the phone will have the ability to

decrypt messages. The actual encryption of emails will be provided as a service

by a mobile phone with the MEG Android app on the mobile device serving as the

email gateway. MEG will then relay the emails over a secure channel to the MEG

client which can forward the email to its intended destination.
Web of trust is probably the key concept of PGP which separates it from

X.509. It will also be the hardest thing to get right in designing MEG. So we
are going to try to make the users life as painless as possible when

navigating the web of trust. Emails will be color coded depending on their
trust level. Green coding will be attached to email that we explicitly trust from

a user. Yellow will be coded for emails we cannot necessarily validate but
rather ones that are trusted through the web of trust. Red coding will be

attached to emails the are either untrusted or are not encrypted. This way a

user can have a more graphical representation on who to trust and who not to.
In fact this scheme has already been used by KCM and actually worked fairly

successfully in usability studies [12].
MEG has the bene t of being able to learn from its predecessors. We have

the ability to understand where previous schemes such as KCM failed. And
we also have the bene t of being able to use the ubiquity of smartphones to

serve as email gateways. Email encryption can be a reality for anyone who
wants it. It is just a matter of engineering the correct solution that people can
use. We believe that MEG is that solution.

References

[1] Lavabit. https://en.wikipedia.org/wiki/Lavabit. Accessed: 2016-02-12.

[2] Privacy-enhanced electronic mail. https://en.wikipedia.org/wiki/Privacy-
enhanced Electronic Mail. Accessed: 2016-02-12.

[3] Ben Adida, Susan Hohenberger, and Ronald L Rivest. Lightweight

encryp-tion for email. In SRUTI, 2005.

5

[4] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and
atomic proxy cryptography. In Advances in Cryptology|EUROCRYPT'98,
pages 127{144. Springer, 1998.

[5] Franco Callegati, Walter Cerroni, and Marco Ramilli. Man-in-the-middle

attack to the https protocol. IEEE Security and Privacy, 7(1):78{81, 2009.

[6] ciphermail. Email encryption gateway.
https://www.ciphermail.com/gateway.html. Accessed: 2016-02-17.

[7] Julie S Downs, Mandy B Holbrook, and Lorrie Faith Cranor. Decision

strategies and susceptibility to phishing. In Proceedings of the second
sym-posium on Usable privacy and security, pages 79{90. ACM, 2006.

[8] Electronic Frontier Foundation. Secure messaging scorecard.
https://www.e .org/secure-messaging-scorecard. Accessed: 2016-02-17.

[9] Steven M Furnell, Nathan Clarke, Cristian Thiago Moecke, and Melanie
Volkamer. Usable secure email communications: criteria and evaluation
of existing approaches. Information Management & Computer Security,
21(1):41{52, 2013.

[10] Simson Gar nkel. PGP: pretty good privacy. " O'Reilly Media, Inc.", 1995.

[11] Simson L Gar nkel, David Margrave, Je rey I Schiller, Erik Nordlander,

and Robert C Miller. How to make secure email easier to use. In
Proceedings of the SIGCHI conference on human factors in computing
systems, pages 701{710. ACM, 2005.

[12] Simson L Gar nkel and Robert C Miller. Johnny 2: a user test of key

continuity management with s/mime and outlook express. In Proceedings
of the 2005 symposium on Usable privacy and security, pages 13{24.
ACM, 2005.

[13] Hushmail. How hushmail works. https://www.hushmail.com/about/technology/how-

it-works/. Accessed: 2016-02-17.

[14] Lee Hutchinston. Taking e-mail back, part 2: Arming your server
with post x and dovecot. http://arstechnica.com/information-
technology/2014/03/taking-e-mail-back-part-2-arming-your-server-with-
post x-dovecot/. Accessed: 2016-02-17.

[15] S. Kent. Privacy enhancement for internet electronic mail: Part ii: Certi

cate-based key management. https://www.ietf.org/rfc/rfc1422.txt.
Accessed: 2016-02-17.

[16] Howard Lightstone. How can i force use of self-signed ssl certi cate.

https://productforums.google.com/forum/!topic/gmail/6gODk9n65ZU.
Accessed: 2016-02-17.

6

[17] Bryan D Payne and W Keith Edwards. A brief introduction to usable
security. Internet Computing, IEEE, 12(3):13{21, 2008.

[18] Steve Sheng, Levi Broderick, Colleen Alison Koranda, and Jeremy J Hy-

land. Why johnny still can't encrypt: evaluating the usability of email
encryption software. In Symposium On Usable Privacy and Security,
pages 3{4, 2006.

[19] Alma Whitten and J Doug Tygar. Why johnny can't encrypt: A usability

evaluation of pgp 5.0. In Usenix Security, volume 1999, 1999.

[20] Philip R Zimmermann. The o cial PGP user's guide. MIT press, 1995.

Recommended AI tools

Latest on:

AI Tools Machine learning Authorship

QuillBot:

your complete

write solution in English

Deepl:

fast、accurate、

and secure transations

VersaBot:

academic writing assistant

inspire new academic ideas

AITools COLUMN |

09 APR 24

AITools COLUMN |

08 APR 24

AITools COLUMN |

07 APR 24

https://quillbot.com/
https://quillbot.com/
https://quillbot.com/
https://quillbot.com/
https://www.deepl.com/
https://www.deepl.com/
https://www.deepl.com/
https://www.versabot.cn/
https://www.versabot.cn/
https://www.versabot.cn/
https://www.nature.com/articles/d41586-024-01053-0
https://www.nature.com/articles/d41586-024-01053-0
https://www.nature.com/articles/d41586-024-01053-0
https://www.nature.com/articles/d41586-024-01053-0
https://www.nature.com/articles/d41586-024-01053-0
https://www.nature.com/articles/d41586-024-01053-0

7

